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It is not uncommon for protein crystals to crystallize with

more than a single molecule per asymmetric unit. When more

than a single molecule is present in the asymmetric unit,

various pathological situations such as twinning, modulated

crystals and pseudo translational or rotational symmetry can

arise. The presence of pseudosymmetry can lead to uncertain-

ties about the correct space group, especially in the presence

of twinning. The background to certain common pathologies is

presented and a new notation for space groups in unusual

settings is introduced. The main concepts are illustrated with

several examples from the literature and the Protein Data

Bank.
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1. Introduction

With the advent of automated methods in crystallography

(Adams et al., 2002, 2004; Brunzelle et al., 2003; Lamzin &

Perrakis, 2000; Lamzin et al., 2000; Snell et al., 2004), it is

possible to solve a structure without visual inspection of the

diffraction images (Winter, 2008; Holton & Alber, 2004),

interpretation of the output of a molecular-replacement

program (Read, 2001; Navaza, 1994; Vagin & Teplyakov, 2000)

or, in extreme cases, manually building a model or even

looking at the electron-density map (Emsley & Cowtan, 2004;

Terwilliger, 2002a,b; Morris et al., 2003, 2004; Holton et al.,

2000; Ioerger et al., 1999; McRee, 1999; Perrakis et al., 1999).

Although automated methods often handle many routine

structure-solution scenarios, pitfalls arising from certain

pathologies are still outside the scope of most automated

methods and often require human intervention to ensure

smooth progress of structure solution or refinement.

This manuscript studies situations that arise when

noncrystallographic symmetry (NCS) operators are close to

true crystallographic symmetry, a situation known as pseudo-

symmetry. Pathologies of this type are often seen in protein

crystallography (Dauter et al., 2005), since a large number of

proteins crystallize with more than a single copy in the

asymmetric unit or in various space groups.

The distinction between ‘simple’ NCS and pseudosymmetry

can be made in a number of ways. One way of defining

pseudosymmetry is by idealizing NCS operators to crystallo-

graphic operators and determining the root-mean-square

displacement (r.m.s.d.) between C� atoms of the actual

structure and the putative structure in which the pseudo-

symmetry is an exact symmetry. If the resulting r.m.s.d. is

below a certain threshold value (say 3 Å), the structure can be

called pseudosymmetric. Using this definition, we find that

about 6% of the structures deposited in the PDB exhibit

pseudosymmetry. This observation is in line with the obser-

vations of Wang & Janin (1993), who concluded that the
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alignment of NCS axes is biased towards crystallographic

symmetry axes. On a year-to-year basis, there has been a slow

increase in the fraction of new structures that exhibit pseudo-

symmetry (Fig. 1). This small increase is most likely to be the

consequence of improvements in hardware and software that

allow more routine detection, solution and refinement of

structures with pseudosymmetry, as well as a general tendency

to focus on more challenging proteins or protein complexes.

In order to develop a better understanding of the conse-

quences of pseudosymmetry, we review some basic concepts

and introduce an efficient way of describing space groups in

unusual settings. We furthermore ‘visualize’ relations between

space groups via graphs similar to those generated by the

Bilbao crystallographic server (Ivanchev et al., 2000). In

contrast to these, the graphs presented here include the point

groups or space groups in all orientations in which they occur

in the supergroups, rather than just one representative per

point-group or space-group type. This results in a more

informative and complete overview of the relations between

different groups.

A number of examples from the PDB (Berman et al., 2000;

Bernstein et al., 1977) and literature are provided to illustrate

common surprises and pitfalls arising from (pseudo)

symmetry. We will describe structures with suspected incorrect

symmetry, give an example of molecular replacement of

twinned data with ambiguous space-group choices and illus-

trate the uses of group–subgroup relations.

2. Space groups, symmetry and
approximate symmetry

2.1. Space groups in unusual settings

The standard reference for crystallo-

graphic space-group symmetry is Inter-

national Tables for Crystallography

Volume A (Hahn, 2002). In the

following, we will use ITVA to refer to

this work. ITVA Table 4.3.1 defines

Hermann–Mauguin space-group symbols

for 530 conventional settings of the 230

space-group types. This means that in general there are

multiple settings for a given space-group type. For example,

assume we are given an X-ray data set that can be integrated

and scaled in space group P222. Further analysis of the data

reveals systematic absences for (0, k, 0) with k odd. This

suggests the space group is P2212. It may be useful or neces-

sary (e.g. for compatibility with older software) to reindex the

data set so that the twofold screw axis is parallel to a new c axis

to obtain space group P2221. The space groups and unit cells

before and after reindexing are said to be in different settings.

In the context of group–subgroup analysis with respect to a

given metric (unit-cell parameters), unusual settings not

tabulated in ITVA arise frequently. To be able to represent

these with concise symbols, we have introduced universal

Hermann–Mauguin symbols by borrowing an idea introduced

in Shmueli et al. (2001): a change-of-basis symbol is appended

to the conventional Hermann–Mauguin symbol. To obtain

short symbols, two notations are used. For example (compare

with Fig. 4 below),

C121 ðx� y; xþ y; zÞ
C121 ð1=2 � a� 1=2 � b; 1=2 � aþ 1=2 � b; cÞ:

These two symbols are equivalent, i.e. encode the same

unconventional setting of space group No. 5. The change-of-

basis matrix encoded with the x, y, z notation is the inverse

transpose of the matrix encoded with the a, b, c notation.

Often, for a given change of basis, one notation is significantly

shorter than the other. The shortest symbol is used when

composing the universal Hermann–Mauguin symbol.

Note that both change-of-basis notations have precedence

in ITVA. The x, y, z notation is used to symbolize symmetry

operators which act on coordinates. Similarly, the x, y, z

change-of-basis symbol encodes a matrix that transforms

coordinates from the reference setting to the unconventional

setting. The a, b, c notation appears in ITVA x4.3, where it

encodes basis-vector transformations. Our a, b, c notation is

compatible with this convention. The a, b, c change-of-basis

symbol encodes a matrix that transforms basis vectors from

the reference setting to the unconventional setting. A

comprehensive overview of transformation relations is given

in and around Table 2.E.1 of Giacovazzo (1992).
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Figure 1
Prevalence of structures with pseudosymmetry in the PDB since 1990. A
3 Å r.m.s.d. between NCS-related C� was used. See text for details

Table 1
Subgroups of P222.

For each subgroup, the symmetry operators are specified together with the operators that are elements of
P222 but not of the subgroup.

Space group Operators Remaining operators

P222 (x, y, z), (�x, y, �z), (x, �y, �z), (�x, �y, z) None
P211 (x, y, z), (x, �y, �z) (�x, y, �z), (�x, �y, z)
P121 (x, y, z), (�x, y, �z) (x, �y, �z), (�x, �y, z)
P112 (x, y, z), (�x, �y, z) (�x, y, �z), (x, �y, �z)
P1 (x, y, z) (�x, y, �z), (x, �y, �z), (�x, �y, z)
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2.2. Relations between groups

A subgroup H of a group G is a subset of the elements of G

which also forms a (smaller) group. For instance, the symmetry

operators of space group P222 can be described by {(x, y, z),

(�x, y, �z), (x, �y, �z), (�x, �y, z)}. Subgroups of P222 can

be constructed by selecting only certain operators. The full list

of subgroups of P222 and the set of ‘remaining operators’ for

each subgroup with respect to P222 are given in Table 1.

Note that if the operators of P211 are combined with one of

the ‘remaining’ operators (�x, y, �z) or (�x, �y, z), the other

operator is generated by group multiplication, leading to

P222. A depiction of the relations between all subgroups of

P222 is shown in Fig. 2. In this figure, nodes representing space

groups are linked with arrows. The arrows between the space

groups indicate that the multiplication of a single symmetry

operator into a group results in the other group. For example,

the arrow in Fig. 2 from P1 to P211 indicates that a single

symmetry element [in this case (x, �y, �z)] combined with P1

results in the space group P211.

2.3. Pseudosymmetry

As mentioned before, it is not uncommon that non-

crystallographic symmetry can be approximated by crystal-

lographic symmetry. A change of the space-group symmetry of

a known crystal form, either a reduction or an increase of the

symmetry, is often induced by ligand binding, the introduction

of selenomethionine residues, halide or heavy-metal soaking

or crystal growth under different conditions (Dauter et al.,

2001; Poulsen et al., 2001; Parsons, 2003).

Group–subgroup relations and their graphical representa-

tions as outlined in x2.2 are a useful tool for understanding

approximate symmetry and the resulting relations between

the space groups of different crystal forms. The graphical

representations can often provide an easy way of enumerating

and illustrating all possible subgroups of a space group. This

enumeration of possible space or point groups can be useful in

the case of perfect merohedral twinning.

Constructing artificial structures with pseudosymmetry is

straightforward. For example, given the asymmetric unit of a

protein in P222, generate a symmetry-equivalent copy using

the operator (�x, y, �z) or (�x, �y, z). If small random

perturbations are applied to this new copy (e.g. a small overall

rotation or small random shifts), then the two copies together

can be considered as the asymmetric unit of a P211 structure

with P222 pseudosymmetry. These two molecules are then

related by an NCS operator that is close to a perfect twofold

crystallographic rotation.

Note that in the previous example crystallographic

symmetry operators were transformed into an NCS operator

by the application of a small perturbation of the coordinates.

The ‘remaining operators’ in Table 1 can be seen as NCS

operators that are approximately equal to the listed operators.

3. Common pathologies

3.1. Rotational pseudosymmetry

Rotational pseudosymmetry (RPS) can arise if the

(approximate) point-group symmetry of the lattice is higher

than the point-group symmetry of the crystal. RPS is gener-

ated by an NCS operator parallel to a symmetry operator of

the lattice that is not also a symmetry operator of the crystal

space group. A prime example of such a case can be found in

PDB entry 1q43 (Zagotta et al., 2003). The structure crystal-

lizes in space group I4, with two molecules per asymmetric

unit (ASU). The r.m.s.d. between the two copies in the ASU is

0.27 Å. The following NCS operator (in fractional coordi-

nates) that relates one molecule to the other is

R ¼
þ0:056 �0:998 �0:003

�0:998 �0:056 �0:003

þ0:002 þ0:003 �1:000

0
@

1
A T ¼

0:50

0:50

0:31

0
@

1
A:

The rotational part R of the NCS operator can be recog-

nized as being almost identical to a twofold axis in the xy

plane. If the idealized operator (�y + 1
2, �x + 1

2, �z + 0.31) is

combined with space group I4m we obtain space group I422

with an arbitrary origin shift along z, which is a polar axis in I4.

The R value between pseudosymmetry-related intensities as

calculated from the coordinates is equal to 44%. For unrelated

(independent) intensities, the R value is expected to be equal

to 50% (Lebedev et al., 2006). In this case, it is clear that the

correct symmetry is I4 rather than I422. However, there is a

‘grey area’ where it may be possible to merge the data with

reasonable statistics in the higher symmetry. While this has the

advantage of reducing the number of model parameters, over-

idealization of the symmetry may lead to problems in structure

solution and particularly refinement. Furthermore, informa-

tion about biologically significant differences may be lost. In

case of doubt, the best approach is to process and refine in

both the lower and the higher symmetry and to compare the

resulting Rfree values and model quality indicators.

3.2. Translational pseudosymmetry and pseudocentring

Translational pseudosymmetry (TPS) is generated by an

NCS operator whose rotational part is close to a unit matrix. If

a TPS operator or a combination of TPS operators is very

similar to a group of lattice-centring operators, it can be

denoted as pseudocentring. An example is PDB entry 1sct

(Royer et al., 1995), where an NCS operator (x + 1
2, y + 1

2, z)
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Figure 2
A graphical representation of all group–subgroup relations for P222 and
it subgroups. The arrows connecting two space groups represent the
addition of a single operator to the parent space groups and its result.
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mimics a C-centring operator. In this particular case, the true

space group is P212121, but pseudosymmetric C2221.

In reciprocal space, the presence of pseudocentring opera-

tors translates into a systematic modulation of the observed

intensities (e.g. Chook et al., 1998) and is most easily detected

by inspection of the Patterson function (e.g. Zwart et al., 2005).

The subset of reflections that would be systematically absent

given idealized centring operators will have systematically low

intensities. If these intensities are sufficiently low, data-

processing programs may index and reduce the diffraction

images in a unit cell that is too small. This situation is very

similar to the case of higher rotational symmetry as discussed

in the previous section. The ‘grey area’ considerations of the

previous section also apply to TPS.

An interesting crystallographic pathology can arise when

pseudocentring is present. An example is given by Isupov &

Lebedev (2008). In this case, the space group is P21 with a

pseudotranslation (x + 1
2, y, z). Consider two P21 cells stacked

side by side on the bc face of the unit cell. The resulting

symmetry is described by the universal Hermann–Mauguin

symbol P1211 (2a, b, c). A full list of symmetry operators in

this setting is shown in Table 2. From this set of operators, a

number of subgroups can be constructed (Fig. 3). Operators

not used in the construction of the subgroup can be regarded

as NCS operators. If operators A and B are designated as

crystallographic symmetry, the space group is P21 and opera-

tors C and D are NCS operators. If, however, operators A and

D are designated to be crystallographic, the space group is P21

with an origin shift of (1
4, 0, 0) and B and C are NCS operators.

Both choices produce initially reasonable R values, but only

choice one is correct and eventually leads to the best model.

3.3. Twinning

Twinning is the partial or full overlap of multiple reciprocal

lattices. Each measured intensity is therefore the sum of the

intensities of the individual domains with different orienta-

tions. The presence of twinning in an X-ray data set usually

reveals itself by intensity statistics that deviate from theor-

etical distributions. However, the presence of pseudo-

rotational symmetry (especially when parallel to the twin axis)

or pseudotranslational symmetry can offset the effects of

twinning on the intensity statistics, making it more difficult to

detect the twinning. Basic intensity statistics elucidating the

problems of pseudosymmetry in combination with twinning

are explained thoroughly by Lebedev et al. (2006). Prime

examples of problems with space-group assignment owing to

the presence of pseudosymmetry and twinning are described

by Abrescia & Subirana (2002), Lee et al. (2003), Rudiño-

Piñera et al. (2004) and MacRae et al. (2006).

The relative sizes of the twin domains building up the

crystal are the twin fractions. The sum of the twin fractions is 1.

The situation where all twin fractions are all equal is called

perfect twinning. A twin with an arbitrary ratio of twin frac-

tions is denoted as a partial twin. A number of papers are

available from the literature that deal with a basic introduc-

tion to twinning (Dauter, 2003; Parsons, 2003; Yeates, 1997;

Yeates & Fam, 1999), as well as case studies of particular

proteins (Barends et al., 2005; Barends & Dijkstra, 2003;

Lehtiö et al., 2005; Rudolph et al., 2003, 2004; Wittmann &

Rudolph, 2007; Yang et al., 2000).

3.3.1. Merohedral and pseudomerohedral twins. Mero-

hederal or pseudomerohedral twinning is a form of twinning in

which the (primitive) lattice has a higher symmetry than the

symmetry of the unit-cell content. If this occurs, the arrange-

ment of reciprocal-lattice points will have a higher symmetry

than the symmetry of the intensities associated with the

reciprocal-lattice points. The symmetry operators that belong

to the point group of the reciprocal lattice, but not to the

symmetry of the point group of the intensities, are potential

twin laws.

If the reciprocal lattice is perfectly invariant under a given

twin law (merohedral twinning), the presence of twinning can

only be detected by inspection of the intensity statistics or

model-based techniques. However, if the reciprocal lattice is

only approximately invariant under a given twin law (pseudo-

merohedral twinning), twin-related intensities may be identi-

fied as individual reflections in the diffraction pattern.

Examples of a number of (pseudo)merohedrally twinned

structures are given in Table 3.

The presence of an NCS operator that is an approximate

crystallographic operator provides a structural basis for the

presence of twinning. Twin-domain interfaces have molecular

contacts that are very similar to interfaces seen in nontwinned

domains, which allows or promotes the growth of twinned

crystals in general. In a similar manner, twinning can be

introduced by the breaking of symmetry owing to a

temperature-dependent phase transition (Helliwell et al., 2006;
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Table 2
The presence of a pseudocentring operator (x + 1

2, y, z) in P21 can lead to
an interesting pathology.

If all operators are crystallographic operators and (x + 1
2, y, z) is designated to

be a lattice translation, then a number of groups can be formed. See Fig. 2 and
the main text for details.

Name Operators Description

A (x, y, z) Identity
B (�x, y + 1

2, �z) 21 through (0, 0, 0)
C (x + 1

2, y, z) Lattice translation
D (�x + 1

2, y + 1
2, �z) 21 through (1

4, 0, 0)

Figure 3
A space-group graph showing all subgroups of space group P1211
(2a, b, c). Specifically, two distinct P21 subgroups are available with equal
unit-cell parameters, related by an origin shift of 1

4. See text and Table 2
for details.
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Herbst-Irmer & Sheldrick, 1998; Parsons, 2003) or by other

external influences such as inclusion of a ligand or heavy-atom

soaks. An example of such a phase transition is described by

Dauter et al. (2001). In that particular case, however, the phase

transition occurred in the other direction: the symmetry of the

crystals before a halide soak had a lower symmetry than after

the soak, eliminating the possibility of twinning.

Note that when a crystal is perfectly twinned or almost

perfectly twinned, the data will scale well in a space group that

is incorrect. The use of an incorrect space group often impedes

a successful structure-solution procedure. A general theme in

most cases studies involving difficulties with twinning (see

references in x3.3) is that structure solution is possible once

the correct space group has been found. Incorrect assignment

of the space group for data sets with close to perfect twinning

seems to be the most important factor hampering structure

solution.

3.3.2. Twinning by reticular merohedry. Reticular mero-

hedral twinning can be understood as merohedral twinning on

a collection of unit cells, a so-called sublattice (Rutherford,

2006). In this type of twinning, only a fraction of the reflections

will overlap with their twin-related counterpart. This results in

a diffraction pattern that consists of intensity sums with

contributions from a variable number of twin domains. A well

known example of twinning by reticular merohedry is the

obverse–reverse twinning in rhombohedral space groups. An

excellent introduction to twinning by reticular merohedry is

given by Parsons (2003). Examples of diffraction patterns can

be found in Dauter (2003).

3.3.3. Order–disorder twinning. Order–disorder twinning

(Dornberger-Schiff & Dunitz, 1965; Dornberger-Schiff &

Grell-Niemann, 1961; Dornberger-Schiff, 1956, 1966) is a less

well classified type of twinning, but has been observed for

protein structures in a number of cases (Trame & McKay,

2001; Wang et al., 2005; Rye et al., 2007). Order–disorder

twinning can occur when a crystal lattice is built up of

successive layers of molecules, in such a manner that two or

more different stacking vectors can relate neighboring layers

to form geometrically identical interfaces between them. An

irregular sequence of stacking vectors results in OD-twinning

or partial crystal disorder dependent on the frequency of the

defects. Such irregularity introduces a modulation of the

intensities of specific reflections. A correction for this effect

can be vital for structure solution and can result in lower R

values during refinement (Trame & McKay, 2001). As noted

by Nespolo et al. (2004), order–disorder phenomena in

combination with twinning may easily go unnoticed during

structure solution and refinement.

3.4. Common pitfalls

3.4.1. Misindexing. If the beam centre has not been defined

accurately enough, autoindexing programs can return an

indexing solution in which the (0, 0, 0) reflection (the direct

beam) is, for instance, indexed as (0, 0, 1). Subsequent merging

of the data will fail if the Miller indices are not corrected.

Misindexing can be avoided by obtaining the position of the

direct beam on the detector using powder methods or by using

more robust autoindexing routines (Sauter et al., 2004).

3.4.2. Incorrect unit cell. When more than one single

crystal is present or when the diffraction images are noisy in

general, it is possible that autoindexing procedures will

produce a unit cell that is too large. In the integrated and

merged data, this issue can reveal itself as a prominent peak in

the Patterson function. In contrast, if the structure under

investigation has a strong pseudotranslation, it can occur that

the indexing solution corresponds to a unit cell that is too

small. In such a case, reflections that are systematically weak

owing to the pseudotranslation are ignored and the pseudo-

translation is mistaken for a lattice translation.

3.4.3. Incorrect space group. If an approximately correct

unit cell has been obtained, the space group has to be deter-

mined based on the intensities. The presence of pseudo-

symmetry can make this choice difficult, but it can often be

made automatically by programs such as phenix.xtriage (Zwart

et al., 2005), XPREP (Sheldrick, 2000), POINTLESS (Evans,

2006) or LABELIT (Sauter et al., 2006). Assigning an incor-

rect space group can result in a number of difficulties. If the

assigned symmetry is too low, structure solution and refine-

ment is made artificially difficult because of the larger number

of molecules in the asymmetric unit. Furthermore, differences

between molecules can subsequently be overinterpreted,

resulting in incorrect biological conclusions.

If the data are twinned and as a result the assigned

symmetry is too high, it may not be possible to solve the

structure. An excellent example that illustrates this (and

other) pitfalls is given by Lee et al. (2003), where the presence

of pseudotranslational symmetry and perfect twinning

resulted in an incorrect choice of both the unit cell and the

space group.

4. Examples

4.1. Interesting cases from the PDB

A number of data sets in the PDB show interesting

pathologies such as twinning and pseudorotational and or

pseudotranslational symmetry. A few examples are high-

lighted here.

4.1.1. 2bd1: incorrect symmetry. The structure of phos-

pholipase A2 (Sekar et al., 2006) was indexed in C2 with unit-

cell parameters a = 74.58, b = 48.69, c = 67.55 Å, � = 90,
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Table 3
Examples of (pseudo)merohedrally twinned structures.

PDB
code

Unit-cell parameters
(Å, �)

Space
group Twin law

Fraction
(%) Type

1q43 a = b = 95, c = 125,
� = � = � = 90

I4 (�k, �h, �l) 8 M

1eyx a = b = 180, c = 36,
� = � = 90, � = 120

R3:H (h, �h � k, �l) 45 M

1upp a = 155.8, b = 156.2,
c = 199.7,
� = � = � = 90

C2221 (h, k, �l) 45 PM

1l2h a = b = 53.9, c = 77.4,
� = � = � = 90

P43 (�h, k, �l) 37 M
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� = 102.3, � = 90�. The Patterson function reveals a peak at

(0, 1
2, 0) with a height approximately equal to that of the origin

(99%). Correspondingly, the intensities of the reflections with

Miller indices that would be equal to zero if the NCS operator

was crystallographic barely rise above the noise as judged

from their associated standard deviations. The r.m.s.d.

between the C� atoms of the two molecules related by the

translational NCS operator obtained from the Patterson

function is very small (0.08 Å). In comparison, the cross-

validated estimate of the coordinate error is 0.19 Å, which

strongly suggests that the unit cell is in fact too large.

4.1.2. 2a8y: incorrect symmetry. The unit-cell parameters

for this structure are a = 96.60, b= 96.56, c= 96.63 Å, �= 91.57,

� = 91.23, � = 91.52�. The deposited space group is P1 (Zhang

et al., 2006). Cursory analysis of the unit-cell parameters

suggests that the highest possible symmetry is rhombohedral.

An analysis of the merged intensities with phenix.xtriage

reveals that the intensity symmetry corresponds to the space

group C2, with unit-cell parameters a = 135.2, b = 138.1,

c = 96.6 Å, � = 90, � = 92.2, � = 90�. In this particular case, the

authors did attempt to merge the data in various point groups

(including C2), but the data only scaled well in space group P1

(Zhang et al., 2006). Given the pseudosymmetric nature of the

lattice (pseudo-rhombohedral), C2 can be embedded in the

higher symmetry lattice in three different ways (see Fig. 4),

corresponding to the three orientations of the twofold axis in

space group R32. The integration suite used to initially process

the data only gave a single indexing choice for C2, which was

unfortunately incorrect. Currently, the structure is being re-

refined in the higher symmetry C2 space group (Ealick,

private communication).

4.1.3. 1upp: pseudotranslational symmetry and twinning.

The structure of a spinach Rubisco complex (Karkehabadi et

al., 2003) has associated unit-cell parameters a = 155.9,

b = 156.3, c = 199.8 Å, � = 90, � = 90, � = 90� and space group

C2221. Obviously, a is approximately equal to b, resulting in

the presence of the twin law (k, h, �l). Furthermore, the

Patterson function indicates a translational NCS vector (1
2, 0, 1

2)

with a height of 40% of the origin. The presence of pseudo-

translational symmetry can make the detection of twinning

difficult, but the results of the L test (Padilla & Yeates, 2003)

are quite clear (Table 4). Refinement of the twin fraction given

the deposited structure indicates that the twin fraction is

approximately 45%. Including twinning in the R-value calcu-

lations (while keeping the model fixed) reduces the R value

from 0.25 to 0.17.

4.2. Molecular replacement using twinned data

Using artificially twinned data, it can be demonstrated that

the contrast of the rotation function decreases in proportion to

the twin fraction (Fig. 5). A similar observation is made for the

translation function (Fig. 6). However, from practical experi-

ence we know that molecular replacement based on twinned

data is often successful if the quality of the search model is

reasonable (e.g. Wittmann & Rudolph, 2007).

In the case of perfect twinning, a data-reduction program

may pick a symmetry that is too high (see x3.3.1). In this

situation it is unlikely that molecular replacement will produce

a solution, as the ASU is typically too small to contain the true

contents of the crystal. Working with the data reprocessed in

the lower symmetry may be successful, even though the data
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Figure 4
A space-group graph showing all subgroups of space group R32:R.
Specifically, three distinct C2 subgroups are available corresponding to
the three possible directions the twofold axes can be oriented in R32.

Table 4
Intensity statistics of 1upp.

Only the L test indicates that the data might be twinned.

Statistic Observed
Theory
(untwinned)

Theory
(perfect twin)

hI 2i/hI i2 2.09 2 1.5
hF i2/hF 2i 0.80 0.785 0.885
h|E 2 � 1|i 0.731 0.736 0.541
hLi 0.43 0.50 0.375

Figure 5
The value of the largest peak in the rotation function using the program
MOLREP for synthetically twinned data. The blue line shows the value
for a model with 100% sequence identity, whereas the purple line
indicates the results of the rotation function when the model has 27%
sequence identity. In both runs, the search model compromised only one
quarter of the total ASU content.
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are perfectly twinned. This is illustrated by the following

example.

The X-ray data set of Dicer crystals (MacRae et al., 2006;

MacRae & Doudna, 2007) was initially processed in point

group P422, but failed to give interpretable maps using

experimental phasing methods in all P4x2y2 groups. Intensity

statistics revealed that the data were twinned and reprocessing

the data in point group P4 resulted in partially interpretable

SAD maps in space group P41, assuming a twofold twin law

along b. However, a complete and refinable model could not

be obtained in any tetragonal space group. Collecting data

from a new specimen revealed that the point-group symmetry

was equal to P222 with almost perfect twinning, leading to a

pseudo-tetragonal system. A successful structure solution via

molecular replacement and SAD methods was obtained in

space group P21221. Here, we repeat the structure solution

using molecular replacement to determine the effect of

different prior space-group hypotheses. To this end, data

submitted to the PDB with accession code 2qwv were re-

indexed from P21212 to P21221 with operator (�a, c, b) to

obtain a setting that corresponds to the standard setting if the

data were merged in point group P422. The data with intensity

symmetry P222 were then merged in P422. These merged data

were then expanded out to point groups P4, C222 and P222,

the three point groups directly ‘below’ point group P422 (see

Fig. 1 in the supplementary material1). Molecular replacement

with chain A of the deposited model was used to determine

the structure in all possible space groups of the given point

groups. The rotation function gave two clear solutions in point

group P422 and four clear solutions in point groups P4, C222

and P222 (Table 5). Subsequent translation functions and

refinement of the twin fraction resulted in three likely possible

solutions in space groups P41, P21221 and P22121 (Table 6).

Further rigid-body and group ADP refinement lowered the R

values of the space-group candidates in the orthorhombic

system to 25%, while the model in P41 had an R value of 29%.

Note that it is not surprising that P21221 and P22121 are both

possible solutions since the data are perfectly twinned in point

group P222 with twin law (�k, �h, �l) and the solutions

correspond to the two different twin domains. Data with a

lower twin fraction or the presence of anomalous differences

can be used to determine the space group.

4.3. Manual molecular replacement using group–subgroup

relations

It is not uncommon that protein molecules crystallize in

various space groups (polymorphs). In some cases, the poly-

morphs are related and one can use the structure of one

polymorph to solve the other without the aid of automated

molecular-replacement software (Di Costanzo et al., 2003). An

example structure solution utilizing group–subgroup relations

is presented here.

The crystals of 1eix and 1jjk (Poulsen et al., 2001) were

grown under similar conditions, but 1eix is a native protein

structure while 1jjk is a selenomethionine derivative. The unit-

cell parameters are listed in Table 7. The ratio of the unit-cell

volumes is 2.12, suggesting the possibility of a relation

between the two unit cells. Another piece of evidence

suggesting a relation is found in the Patterson function of 1jjk:

a large peak is located at (1
2, 0, 1

2), which can be interpreted as

pseudocentring (translational NCS). If this NCS operator is

idealized to a crystallographic operator, the unit-cell para-

meters of 1jjk become equal to the unit-cell parameters of 1eix

(apart from a permutation of the basis vectors). It is thus clear

that 1jjk is related to 1eix via pseudotranslational symmetry
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Table 6
Translation-function and refinement results for Dicer data.

Only molecular-replacement solutions with initial R values (Rmolrep) below
50% are shown. All other space groups results in values above 50%. Rtwin is
the R value of the model to the data as obtained directly after molecular
replacement, but taking into account the effects of twinning. Rgroup is the R
value of the model and the data after rigid-body refinement of individual
chains and refinement of grouped ADPs. Twin fractions were refined to 50%
for all cases.

Space group Copies Rmolrep (%) Rtwin (%) Rgroup (%)

P4122 2 47 NA NA
P41212 2 48 NA NA
P41 4 43 38 29
P2221 4 49 39 NA
P21221 4 43 36 25
P22121 4 43 37 25
P212121 4 49 43 NA

Table 5
Rotation-function peaks of Dicer data.

Point group Top rotation-function peaks (Rf/�)

P422 8.29 7.55 4.61
P4 8.32 8.32 7.58 7.58 4.62
C222 8.28 8.28 7.72 7.72 4.68
P222 8.27 8.27 7.55 7.55 4.61

Figure 6
The value of the contrast of the translation function using the program
MOLREP for synthetically twinned data, given a correct orientation of
the model. The search model was identical to the model used to compute
the artificially twinned data.

1 Supplementary material has been deposited in the IUCr electronic archive
(Reference: BA5111). Services for accessing this material are given at the back
of the journal.
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(as seen from the Patterson peak) and pseudorotational/screw

symmetry (P21 versus P212121).

A relation between the two unit cells was identified with the

tool iotbx.explore_metric_symmetry (Zwart et al., 2006) and is

depicted in Fig. 7. The procedure used to solve the structure of

1jjk with the model of 1eix via group–subgroup relations is

described in Di Costanzo et al. (2003). Firstly, the appropriate

ASU is constructed by applying a twofold screw axis to the

ASU of 1eix. Subsequently, a lattice translation along a is

applied to these two molecules. An appropriate change of

basis to bring the model into the correct orientation and a

subsequent origin shift generates a possible solution. In this

particular case, a group theoretical analysis reveals that two

origin shifts are possible (see x3.2 and Fig. 2 in the supple-

mentary material). Rigid-body refinement of the two possible

solutions, taking into account the presence of twinning,

resulted in a single clear solution (Table 8).

Using the same group–subgroup relations, one can test the

presence of a relation between crystal forms by computing

intensity correlations between reindexed data sets. If the

crystal form with the smaller unit cell is reindexed to a unit cell

that is related to the larger cell, the intensities can be

compared relatively straightforwardly (Grosse-Kunstleve et

al., 2005). This allows one to verify a possible relationship

between two crystal forms before attempting manual mole-

cular replacement.

5. Discussion and conclusions

There are numerous special cases and pitfalls arising from

the interplay of crystallographic and noncrystallographic

symmetry in macromolecular crystals. Clearly, this paper only

touches the tip of the iceberg. Fortunately, there are now a

number of tools that make it possible to identify many of the

most common problems (Evans, 2006; Sheldrick, 2000;

Vaguine et al., 1999; Zwart et al., 2005). In some situations it is

possible to correct for the problem; in others, use of the

appropriate algorithms in subsequent structure solution and

refinement can lead to accurate final models that are suitable

for biological interpretation. Experience suggests that it is

initially best to treat all experimental data with suspicion and

apply all available tests to identify possible pathologies as

soon as possible after data collection and processing. In an

ideal world, data would be stored in an unmerged form in

space group P1 and certain decisions made automatically as

more information becomes available. In the case of (close to)

perfect twinning, knowledge of the proper space group can for

instance only be available when a partial model has been built.

A similar argument can be made for the detection of and

dealing with order–disorder twinning. Note that this scheme

assumes that the correct unit cell has been found by the

autoindexing software. Incorporating decision-making

schemes that include changes in the primitive unit-cell para-

meters will most likely require access to the raw data.

Although access to the raw data is preferred for decision-

making procedures, the Dicer example (x4.2) illustrates that

integrating the expansion of data into a lower space group in a

molecular-replacement procedure can in some cases lead to a

successful structure solution. Similar arguments can probably

be made for structure-solution routes via experimental

phasing techniques.
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